
Speaker: Dr Kh’ng Xin Yi

Date: 6th Aug 2023

2023 年度全国中学生程式设
计竞赛 -第五次工作坊
National Secondary School

Programming Contest -

Workshop 5 (Session1)

Problem

Solving I
Session 1 (9:00AM – 10:30AM)

You are required to reorder the elements of an array with the following instructions:

(1) All the element(s) with the smallest value will be listed at the beginning of the array.

(2) All the element(s) with the largest value will be listed at the end of the array.

(3) The remaining elements will be listed in the relative order as they appear in the

original array.

The example below shows the original array content and the reordered array content.

Original Array:

[6, 10, 8, 0, 3, 10, 0, 10, 1]

Reordered Array:

[0, 0, 6, 8, 3, 1, 10, 10, 10]

Reordering Array

SAMPLE 1

Write a programme to

Input, in sequence

X, the size of the array where 1 ≤ 𝑋 ≤ 50; and subsequently,

X integers that represent the elements of the array.

Output, the order of the elements in the reordered array, following the 3 instructions

given. Each two consecutive elements in the array will be separated by a space.

SAMPLE 1

Input (输入) Output (输出)

9 6 10 8 0 3 10 0 10 1 0 0 6 8 3 1 10 10 10

15 -7 9 -6 5 10 -7 0 7 12 6 8 1 -6 -7 -7 -7 -7 -7 -7 9 -6 5 10 0 7 6 8 1 -6 12

7 -2 6 6 -2 6 -2 6 -2 -2 -2 6 6 6 6

5 9 9 9 9 9 9 9 9 9 9

10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

a[0] ≠ 3
a[0] swaps to position 0

SOLUTION

OVERVIEW

2 3 1 1 3 3 2

2 3 1 1 3 3 2

2 3 1 1 3 3 2

2 1 3 1 3 3 2

1 2 3 3

max = 3 max = 3

a[0] ≠ 3
a[0] swaps to position 0

a[1] = 3
a[1] remains

a[1] = 3
a[1] remains

a[2] ≠ 3
a[2] swaps to position 1

a[2] = 3
a[2] remains

a[3] ≠ 3
a[3] swaps to position 1

Not maximum value, push to front

SOLUTION

OVERVIEW

2 3 1

2 3 1

2 3 1

2 1 3

max = 3

a[0] ≠ 3
a[0] swaps to position 0

a[1] = 3
a[1] remains

a[2] ≠ 3
a[2] swaps to position 1

Find the maximum.

Traverse each value from the beginning.

If value = maximum, the current value

remains.

If value ≠ maximum, swap it with the value

at position where the next occurrence of

the non-maximum value would be placed.

Then, position + 1.

01

02

03

Not maximum value, push to front

SOLUTION

OVERVIEW

2 1 3

2 1 3

2 1 3

1 2 3

min = 1

a[2] ≠ 1
a[2] swaps to position 2

a[1] = 1
a[1] remains

a[0] ≠ 1
a[0] swaps to position 1

Find the minimum.

Traverse each value from the end.

If value = minimum, the current value

remains.

If value ≠ minimum, swap it with the value at

position where the next occurrence of the

non- minimum value would be placed.

Then, position - 1.

04

05

06

Not minimum value, push to back

#include <iostream>
#include <algorithm>
using namespace std;

void swap(int& t1, int& t2) {
int tmp = t1;

 t1 = t2;
 t2 = tmp;
}

int main() {
 int X, max, min, index, index2;

 cin >> X;
int* arr = new int[X];
for (int i = 0; i < X; i++)

 cin >> arr[i];

max = *max_element(arr, arr + X);
 min = *min_element(arr, arr + X);

C++
Suggested Solution-Sample 1

01

02

Array Initialization
Get array size, X.

Create array with size X.

Input array value.

Maximum & Minimum
Get the maximum and minimum value.

t1 = 1, t2 = 3

tmp = t1 = 1

t1 = t2 = 3

t2 = tmp = 1

index = 0;
 index2 = X - 1;

for (int i = 0; i < X; i++) {
 if (arr[i] != max) {
 swap(arr[i], arr[index]);
 index++;
 }
 }

for (int i = X - 1; i >= 0; i--) {
 if (arr[i] != min) {
 swap(arr[i], arr[index2]);
 index2--;
 }
 }

for (int i = 0; i < X; i++)
 cout << arr[i] << " ";

 return 0;
}

C++
Suggested Solution-Sample 1

03

04

Maximum Swap
Go through each element to see if it's maximum.

If value ≠ maximum, swap it with the value at

position where the next occurrence of the non-

maximum value would be placed. Position + 1.

Minimum Swap
Go through each element to see if it's minimum.

If value ≠ minimum, swap it with the value at

position where the next occurrence of the non-

minimum value would be placed. Position - 1.

05
Result Printing
Print reordered array.

Given an array of N integers, where 2 ≤ N ≤ 8, it is known that there is one and only

one combination of these integers that can be summed up to a total of 24.

For example, if the given array is [1,12,32,11], then the only combination will be

[1,11,12].

Find such a combination from a given array and display the numbers in the

combination in ascending order.

Sum of 24

SAMPLE 2

Write a programme to

Input, in sequence

the first integer is N, indicating the number of integers in the array; and subsequently

the N integers in the array.

Output, in sequence the combination of the integers from the given array that are

summed up to 24. Note that you need to sort the output integers in ascending order.

SAMPLE 2

Input (输入) Output (输出)

6 14 6 12 7 8 6 6 6 12

8 6 11 14 8 12 5 14 15 5 8 11

8 1 10 7 15 7 15 15 3 7 7 10

8 15 13 6 4 8 13 2 8 2 6 8 8

8 15 10 8 13 13 9 13 10 9 15

SOLUTION

OVERVIEW

Array = [2 22 1]

23 = 8 combinations

Combination

of numbers

Sum Reversed binary

representation

Binary

representation

Sum

(0-2n-1)

X X X 0 0 0 0 0 0 0 0

2 X X 2 1 0 0 0 0 1 1

X 22 X 22 0 1 0 0 1 0 2

X X 1 1 0 0 1 1 0 0 4

2 22 X 24 1 1 0 0 1 1 3

X 22 1 23 0 1 1 1 1 0 6

2 X 1 3 1 0 1 1 0 1 5

2 22 1 25 1 1 1 1 1 1 7

SOLUTION

OVERVIEW

Array = [2 22 1]

23 = 8 combinations

Combination

of numbers

Sum Reversed binary

representation

X X X 0 0 0 0

2 X X 2 1 0 0

X 22 X 22 0 1 0

X X 1 1 0 0 1

2 22 X 24 1 1 0

X 22 1 23 0 1 1

2 X 1 3 1 0 1

2 22 1 25 1 1 1

1. Efficient Element Representation: Binary digits indicate
inclusion (1) or exclusion (0) of value.

2. Memory Efficiency: Storing all subsets directly consumes
extensive memory, growing exponentially with input size.

Binary approach uses fixed memory, much more efficient.

{{2},{22},{2,22}}

3. Single Loop Computation: Binary approach computes
subsets in a single loop, avoiding nesting or recursion for

faster calculations.

SOLUTION

OVERVIEW

Array = [2 22 1]

23 = 8 combinations

Generate all possible combinations of input

numbers using binary representation and reverse it.

Calculate sum of all possible combinations

using binary representation of numbers.

'1' bits determine included numbers.

Check if any combination sums up

to 24. Print its numbers in ascending

order.

01

02

03

Combination

of numbers

Sum Reversed binary

representation

X X X 0 0 0 0

2 X X 2 1 0 0

X 22 X 22 0 1 0

X X 1 1 0 0 1

2 22 X 24 1 1 0

X 22 1 23 0 1 1

2 X 1 3 1 0 1

2 22 1 25 1 1 1

#include <iostream>
#include <bitset>
#include <vector>
#include <algorithm>
using namespace std;

int main(void) {
int number_of_inputs, count = 0, total;

 cin >> number_of_inputs;
int* data = new int[number_of_inputs];
for (int i = 0; i < number_of_inputs; i++)

 cin >> data[i];

for (int i = 0; i < pow(2, number_of_inputs); i++) {
 string binary = std::bitset<32>(i).to_string();
 reverse(binary.begin(), binary.end());

C++
Suggested Solution-Sample 2

01

02

Array Initialization
Get array size

Create array

Input array value

Binary Representation
Generate all possible combinations of

input numbers using binary representation

and reverse it.

total = 0;
 vector<int> answer;

for (int j = 0; j < number_of_inputs; j++) {
 if (binary[j] == '1') {
 total += data[j];

answer.push_back(data[j]);
 }
 }

 if (total == 24) {
 sort(answer.begin(), answer.end());

for (int k = 0; k < answer.size(); k++) {
 cout << answer[k] << endl;
 }
 count++;
 }
 }

 return 0;
}

03

04
Result Printing
Check if any combination sums up to 24.

Print its numbers in ascending order.

C++
Suggested Solution-Sample 2

Sum of Combinations
Calculate sum of all possible combinations

using binary representation of numbers.

'1' bits determine included numbers.

Dena takes the train to work every day from the Main Street Station to the City

Center Station. There are two trains she can take, the red train or the blue train. Both

trains start operating at 8 a.m. A red train arrives every X minutes, and a blue train

arrives every Y minutes, where X and Y are both positive integers. Dena always

arrives at the platform after Z minutes past 8 a.m. but before 9 a.m., and then she gets

on the first train arriving at the station. However, if both trains arrive simultaneously,

Dena gets on the train with relatively lower frequency. Write a programme to find out

which train Dena is taking more often.

Taking the Train

SAMPLE 3

For example:

Assume that X = 2, Y = 3 and Z = 6.

If she arrives between 08:06 and 08:08, she takes the red train that arrives at 08:08.

If she arrives between 08:08 and 08:09, she takes the blue train that arrives at 08:09.

If she arrives between 08:09 and 08:10, she takes the red train that arrives at 08:10.

If she arrives between 08:10 and 08:12, she waits for both trains to arrive at 08:12 and

takes the blue train because it is less frequent than the red train.

Since the arrival times of both trains are periodic with a period of 6 minutes, the rest

of the calculation can be omitted in this example.

From the above, in conclusion, Dena is taking both trains equally often.

Taking the Train

SAMPLE 3

Write a programme to

Input, in sequence

two positive integers, X, Y, where X ≠ Y, 1 ≤ X, Y ≤ 100, and one positive real number,

Z, where 0 < Z < 60.

Output, "Red" if Dena takes the red train more frequently. If she takes the blue train

more frequently, then output "Blue". If she takes both trains equally often, then output

"Equal".

SAMPLE 3

Input (输入) Output (输出)

2 3 6 Equal

33 38 36 Red

70 68 51 Blue

27 23 45 Red

58 59 57.5 Red

SOLUTION

OVERVIEW

8 am z min
after 8 am

9 am

total duration of red train usage VS

total duration of blue train usage

Scenario 1:
(red train arrives)

8 am z min
after 8 am

9 am

total red train usage += red train arrival time – last train arrival time

Scenario 2:
(blue train arrives)

8 am z min
after 8 am

9 am

total blue train usage += blue train arrival time – last train arrival time

9 am8 am z min
after 8 am

total red train usage ≠ total blue train usage >> Choose the train with less
frequency of use (e.g. blue)

9 am8 am z min
after 8 am

total red train usage = total blue train usage >> Choose the train with lower count
of train services available (e.g. red)

Scenario 3:

(red and blue
train arrive)

SOLUTION

OVERVIEW

9 am8 am z min
after 8 am

SOLUTION

OVERVIEW

x 2x 3x 4x

y 2y 3y 4y 5y

Check the periodic time of only red train arriving at the station >>

update total red train usage

Check the periodic time of only blue train arriving at the station >>

update total blue train usage

Find LCM to determine the periodic time of both trains arriving at the station
>> choose train with lower usage frequency if total red train usage ≠ total blue train usage

>> choose train with fewer available services if total red train usage = total blue train usage)

01

02

03

#include <iostream>

using namespace std;

long int gcd(long int a, long int b){

 if (b == 0)

 return a;

 else

 return gcd(b, a % b);

}

int main(){

 long int x, y;

 double z, last, sum1 = 0, sum2 = 0;

 long int lcm, t = 0, threshold = 60, t1 = 1, t2 = 1;

 cin >> x >> y >> z;

 if (x > y)

 lcm = x * y / gcd(x, y);

 else

 lcm = x * y / gcd(y, x);

 last = z;

C++
Suggested Solution-Sample 3

01

02

Variable Initialization
Get the arrival time of red train (x), blue

train (y) and Dena (z)

Lowest Common Multiple
Find the LCM of x and y to determine the

periodic time of both trains arriving at the

station.

while (t < 60){

 t = min(t1 * x, t2 * y);

 if (t % x == 0) t1++;

 if (t % y == 0) t2++;

 if (t < z) continue;
 if (t % lcm == 0){

 if (t >= threshold) t = threshold;
 if (sum1 == sum2){

 if(t1 > t2)

 sum2 = sum2 + (t - last) ;

 else if (t1 < t2)

 sum1 = sum1 + (t - last) ;

 else if (t1 = t2){

 sum1 = sum1 + (t - last) / 2;

 sum2 = sum2 + (t - last) / 2;

 }

 }

 else if (sum1 > sum2)

 sum2 = sum2 + (t - last);

 else

 sum1 = sum1 + (t - last);

 }

C++
Suggested Solution-Sample 3

03
Arrival of Red & Blue Train
During periodic time, both red and blue

trains arrive.

For train with lower frequency of use, update

its frequency (train arrival time - passenger

arrival time).

For train with same frequency of use, yet

lower count of train services available,

update its frequency.

For trains with same frequency of use, yet

equal count of train services available,

update both frequency (average).

else if (t % x == 0){

 if (t >= threshold) t = threshold;
 sum1 = sum1 + (t - last);

 }

 else if (t % y == 0){

 if (t >= threshold) t = threshold;
 sum2 = sum2 + (t - last);

 }

 last = t;

 }

 if (sum1 == sum2)

 cout << "Equal" << endl;

 else if (sum1 > sum2)

 cout << "Red" << endl;

 else

 cout << "Blue" << endl;

 return 0;

}

C++
Suggested Solution-Sample 3

04

05

Arrival of Red / Blue Train
Before periodic time, either red or blue

train arrives. For arriving train, update its

frequency of use (train arrival time -

passenger arrival time).

Result Printing
"Red" if Dena prefers the red train

"Blue" if she prefers the blue train

"Equal" if she takes both trains equally

often.

Website:
http://nsspc2023.utar.edu.my/login

Student account:
1) username: demo01, password: 1234567890
2) username: demo02, password: 1234567890
3) username: Demo03, password: 1234567890
4) username: demo04, password: 1234567890

http://nsspc2023.utar.edu.my/login

THANKS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

